UW Campus Navigator: WiFi Navigation

Eric Work
Electrical Engineering Department

University of Washington

Introduction

When 802.11 wireless networking was
first commercialized, the high prices for wireless
networking equipment deterred most consumers.
When IEEE 802.11a was first
consumers weren’t ready and there was little
commercial adoption. Shortly after IEEE 802.11b
was standardized. This time commercial adoption

standardized

was more prevalent, and manufactures were
striving to build smaller and cheaper wireless
network cards. Manufactures continued to follow
this trend as new standards were released. Now
with IEEE 802.11g available you can get 25 times
the performance for about one-twentieth of the
price'. The market for 802.11 radios is currently
about 50 million units per year'. It is this trend
that has caused a boom in the adoption of 802.11
wireless networking.

This rapid deployment of new wireless
access points each year is a crucial part to the
success of WiFi Navigation. You may be well
aware that wireless networking allows users to
roam freely with their mobile devices and
effortlessly connect to networks from a distance.
What you may not know is that wireless access
points can be used as fixed beacons in a wireless
positioning and navigational system.

The inspiration for WiFi Navigation has
come from number of sources, first and foremost
the Intel Placelab and their work on location-
aware computing”. Intel has already done a
significant amount of work on 802.11 wireless
in WiFi
Navigation originated from a desire to incorporate

positioning. My primary interest

Intel’s technology into the UW Campus
Navigator’. The UW Campus Navigator project
was first started in July 2003 as a research
exchange program between the University of
Washington and the Chinese University of Hong
Kong. The outcome of the project was a device a
student could carry, which allowed them to search
for restaurants on campus and navigate to their
destination using a built-in map.

As a team member of the UW Campus
Navigator project, I was in charge of the
navigational aspects. Originally plans were
drafted to incorporate WiFi Navigation into the
final project. After having a number of difficulties
with incompatibilities between Intel’s work and
our platform choice, we had to rely upon GPS.
After the conclusion of the research exchange I
continued working on the project and decided to
instead use Intel’s navigational theory and develop
all the necessary code from scratch. This has been
the inspiration for the development of WiFi

Navigation on the Pocket PC.

Implementation Overview

The concept of WiFi Navigation is very
simple despite the technicalities of the underlying
hardware. The most important part to the system
is a database located on the mobile device with a
predetermined list of wireless access points in a
defined area with corresponding longitude and
latitude coordinates. When a mobile user begins
navigating, the device will first collect a list of
wireless access points within range of the radio.

This access point list will then be compared
against the database to extract a set of coordinates
for the access points which are in range. Using
this coordinate set and an algorithm, the mobile
device can estimate where it believes the user is
located. Using standard mapping technology this
position can be placed on the map so the user can
then navigate their way to their destination. It
should quickly become apparent that a high
density of wireless access points is a desirable
characteristic.

Accessing the Wireless Hardware, Obtaining

Access Point Information

The most crucial part for WiFi Navigation
is the ability to access the wireless hardware and
obtain access point information. What is needed
is a way to retrieve a list of access points within
range of the wireless device. From each visible
access points the minimum requirements are the
MAC address and the signal strength if WiFi
Navigation is ever to work. Once hardware access
is established,

information becomes easy.

obtaining all the desired
If accessing the
wireless hardware remained unresolved, nothing
more could have been done and the project would
have come to a standstill.

Accessing the network driver in Pocket
PC 2003 turned out to be a more time consuming
task than expected. When I began, a tremendous
amount of searching was done on the Internet
looking for ways to get the required access to the
underlying network driver. While searching, I
quickly found a way to access an assortment of
hardware information in Windows XP using
Windows Management Instrumentation (WMI).
In a number of example programs I was able to
check the connection status of various installed

network devices on my desktop computer. When

looking into WMI for the Pocket PC I found that it
had been developed, but was planned for release in
the upcoming Window Mobile .NET. Somewhat
set back by the disappointment I decided to
continuing searching for other techniques.

While working on the UW Campus
Navigator the previous quarter we experimented
with a program called Pocket Warrior' which
performed operations similar to those required for
WiFi Navigation. The software was developed for
Pocket PC 2002 but the source code was an
excellent starting place for examples of accessing
Pocket Warrior 1
discovered was developed on top of the Network
which
provides a common API for accessing low level

to the wireless hardware.

Driver Interface Specification (NDIS),

network drivers, and is available in with almost
The NDIS examples
that were available would not compile for Pocket
PC 2003.
continued searching for examples and references
to NDIS on Pocket PC 2003.

After more searching I discovered NDIS
User Mode I/O (NDISUIO) which is similar to
NDIS but has been evolved to make hardware

every version of windows.

Now more familiar with the API, 1

access easier and more unified. NDISUIO is a
special driver which eliminates the need for
connecting to each low level network driver
individually and in addition also supports 802.11
network interfaces. By simply connecting to the
NDISUIO driver and telling the driver which
device to access, the rest of the connecting is done
automatically. The MSDN libraries were a great
source for learning the Windows API associated
with the NDISUIO driver. After learning the API
I developed a simple test program in Embedded
Visual C++ (eVC++).
finished developing all the routines that might

Once 1 saw progress, I

have been useful for WiFi Navigation. When all
the wireless functionality was complete, my test
program successfully displaying access point
information on the Pocket PC.

With the hardware access now working,
this functionality had to be incorporated into .NET
to make integration with the UW Campus
Navigator possible. To facilitate the integration
all the functions had to first be put into a Dynamic
Link Library (DLL). Once the DLL was created
a .NET class had to be developed to encapsulate
all of the function calls and data manipulation.
There were difficulties ensuring that the functions
were imported correctly into .NET, but nothing
major.

The cause of some stalling in development
at this stage was marshaling data between the
eVC++ and .NET C#. Marshaling is the process
of importing unmanaged data, like C++, into a
managed environment, like C# where the language
handles all the memory management. The full .
NET Framework has support for marshalling
structures where the field length may be variable.
In the .NET Compact Framework this does not
exist, so an alternative is duplicating the field and
naming the extra fields an arbitrary name until you
have the desired field length in term of base types.
The

implementation was dealing directly with the

more appropriate alternative for my
unmanaged pointers, and extracting an array of
bytes then performing type conversions on the
array. Once marshaling was correctly done the
class was compiled as a class library which could

be included into any .NET application.

4’—> BSSID —| BSSID
BSSID BSSID | —
S]] L BssID
- RSSI ——» SSID
SSID SSID SsID
L——| ssbD
RSSI RSSI RSS!
Unmanaged Default Unmanaged Byte
Structure Marshalling Structure Marshalling
Figure 1: Column 1 depicts how the default

marshalling leads to incorrect field lengths. Column
2 depicts using byte-by-byte marshalling to correct
the field lengths.

the

Translation

Building Database, GPS to WiFi

The next major component to WiFi
Navigation is an access point database. At
minimum the WiFi database must store the MAC
address, latitude, and longitude for each access
point, and be stored locally on the Pocket PC. The
UW Campus Navigator originally utilized a local
SQL CE database for storing location names and
their positions. The SQL CE database format was
the natural choice, since pre-built libraries were
already included with .NET, and working code
was available from the previous project. In
addition an entire SQL CE database is contained
within a single file and can easily be replaced or
moved for easy upgrades when new access points
became available.

Once the decision was made to use SQL
CE, functions were developed to load the database
with access point information and run queries to

retrieve location information. To quickly load

information into the database I developed a utility
to parse comma separated value (CSV) files. Each
CSV file contained a series of lines with a MAC
latitude, and longitude separate by
For each line of the CSV file, a new
database entry was created and the values from the

address,
commas.

CSV file were mapped into their corresponding
fields. By using CSV files,
manipulation utilities could be utilized. Basic text

existing text

utilities could be used to manually insert new
entries, remove duplicate entries, or merge CSV
files. By using this implementation approach the
access point database was flexible and portable.

{13 | WifiDB Loader o qx 1:29

Load

Database Path:

CSV Path:

Figure 2: A screenshot of the utility that creates a
new database and loads in data from a CSYV file.

In order to build a database, a collection of
CSV files first needed to be created, either through
manual entry or through automation. A main goal
of WiFi Navigation is taking advantage of the
growing number of access points throughout the
community. For this to be possible an automated
To facilitate the
automated collection process I developed a utility

approach had to be used.

to scan for wireless access points with the GPS

enabled and assign latitude and longitude values to
each unique MAC address found.

The collection algorithm used in my
implementation was very simple, but performance
could be improved by using a more sophisticated
technique. To begin, the wireless hardware
performs a scan and returns a list of the access
points within range. For each item in this list the
MAC address is compared to other previously
saved entries to locate any duplicates. If there are
no matches, a new entry is created in the database
for the new MAC address and is assigned the
current GPS location. If there is a match, the
previously saved signal strength is compared to
the new signal strength. If the new signal strength
is greater than or equal to the saved signal
strength, the GPS location for the saved entry is
updated with the current GPS location. If instead
the new signal strength is less then the old signal
strength, then the list item is ignored.

(£ | wifi Scanner o x 137
MAC Name =i | st

4] i [»
GPS: Off Wifi: Off

File E|*

Figure 3: A screenshot of the utility that scans for

access points and assigns each a GPS coordinate.

The objective of this simple algorithm is
to assign each MAC address with an approximate
real GPS location. The location where the highest
signal strength was observed is estimated to be the
To help
organize the collection of CSV files, each time the

closest location to the true location.

scanning process is terminated the file includes a
time stamp. Time stamping allowed me to
separate a particular region into one CSV file that
could later be identified. Once the collection of
CSV files was complete the files were loaded into
a new database that could be used by my WiFi

Navigation system.

Hardware and Database Integration, WiFi to
GPS Translation

The of WiFi
Navigation implies a way of extracting GPS
The
access point database was created by mapping
For WiFi
Navigation to work the process must be reversed.

elementary concept

information from a list of access points.

WiFi access points to GPS locations.

The final step to completing the implementation is
linking the access point information retrieved
from the hardware, to the GPS information inside
the database. By moving the functionality of the
access point database into my .NET class library I
was able to join these pieces together. By using a
unified library, the WiFi Navigation functionality
could be effortlessly included into any new
project.

With the unified library complete, a
positioning algorithm was then developed to
actually perform the reverse translation to GPS
The
implementation was simplistic and considered

coordinates. algorithm wused in my
only one factor, the signal strength, to compute a
weighed average. A more complex algorithm,
which considers other factors, could improve the

performance. The algorithm begins by first

scanning for nearby access points. For each item
found during the scan, the signal strength is
weighed between zero and five. Next the database
is queried, using the MAC address, to retrieve the
latitude and longitude. The resulting latitude and
longitude are multiplied by the signal strength
factor and added to a running total. The number
of entries to average is then incremented by the
signal strength factor number. After every item
had been processed the running total is divided
into the number of entries and an estimated GPS

location is obtained.

£iF | uw Campushavigat ¢t <x 1:39 (D

Nearby Access Points:
MAC | name EXN
0D022002C00S seattlewireless-no... -7
0050F2CF4142 Lair De Clune -4
4] Il [»
Location: -

Search | Map | GPS | WiFi |

File POI G5 WiFi E|a~

Figure 4: A screenshot of the UW Campus Navigator

with WiFi Navigation implemented.

After the algorithm was implemented and
all the remaining components fully debugged the
result was a complete WiFi Navigation system.
The next step was integrating the system into the
Added to the UW
Campus Navigator was a WifiGps class, which

UW Campus Navigator.

contained a subset of the functionality available
with GPS, but was based on the WiFi Navigation
system. By linking the WifiGps class to the map |

had a useable WiFi Navigation system fully
implemented.

WiFiGPS Compared to GPS

Only after looking at alternatives such as
the U.S. government’s global position system
(GPS) can the benefits of WiFi Navigation be
Since GPS has been standardized and
receivers are widely available to the public, GPS

seen.

is popular among consumers for positioning and
navigation. Instead of using a fixed position as a
reference, GPS works by using twenty-four
satellites moving in low-orbit, which broadcast
positioning information to a GPS receiver. Once
the receiver has a clean signal from at least three
satellites it uses a complex algorithm to accurately
position the user to within a couple meters.

The first version of the UW Campus
Navigator relied upon GPS because of its
reliability and ease of use. Though prices for GPS
receivers are decreasing they are still costly. Cost
was an important factor to consider when
developing WiFi Navigation, due to the lower cost
With the

networking

of wireless radios over GPS receivers.
widespread adoption of wireless
technology soon access points will be on every
corner and every mobile device will have an
802.11 radio (or so we hope).

After a little testing it didn’t take long to
realize that GPS doesn’t work indoors. The signal
transmitted from the GPS satellites are weak and
are easily distorted without a clear view of the
sky. Access points do not suffer from this
problem hence wireless networking works through
walls. This was another motivation for WiFi
Navigation. Although WiFi Navigation is not as
accurate as GPS, for a number or reasons, it is
beneficial to have some form of navigation
The signal transmitted from the GPS

satellites also can take time to synchronize before

indoors.

When turnrf on, a GPS
receiver can take between 30 seconds to 30

acquisition can occur.

minutes to acquire an accurate GPS position. As
soon as a wireless radio is turned on, scanning can
The quick
Navigation avoids

begin. initialize time of WiFi

long wait periods before

navigation can begin.

Error Analysis

One major downfall of WiFi Navigation is
the error factors that account for a decrease in the
accuracy of positioning. After performing field
testing the most significant contribution to this
error is the method used to assign access points in
the collection algorithm. By simply assigning a
location based on the highest observed signal
strength, access points can only be positioned at
locations where the scanner was once located.
When the application attempts to later reposition
the user with the positioning algorithm, an
incorrectly assigned position will be used in the
calculations. If the application detects that the
signal strength observed is similar to the signal
strength used when assigning the access point a
location, the device will assume the user is at the
assigned location. The user could actually be on
the opposite side of the access point locating the
user at an incorrect position.

The remainder of the positioning errors
are accounted for by using only one factor in
position algorithm. The weighed average does not
account for the variance in signal attenuation
through walls or object made of various materials.
Since the wireless hardware provides only the
signal strength other factors have to be derived
during the collection process.

Improvements

With additional research there are likely
I will
describe one such way suggested to me by

many ways to improve WiFi Navigation.

Professor Mari Ostendorf. These suggestions help
overcome the drawbacks of positioning errors, by
using more complex but more reliable algorithms
for both the collection process and the positioning
process.

To improve the collection process the
algorithm needs to actually guess the true location
of the access point, not simply assign the access
point a location. To make a guess, the signal
strength and GPS location at three different
positions around an access point must be recorded.
this
strength can be used to approximate the distance

After collecting information the signal
from the access point to the device. This will be
the radius of the first guess circle. After doing the
same for the other two positions there will be
three overlapping guess circles. The area of the
overlapping region between the three guess circles
is the probability that our guessed location is
correct. The center of the overlapping region is
the guess location. If more than three positions
are available, the guess location will be closer to
the true location

there by increasing the

probability of the guess. After each guess the
MAC address, latitude, and longitude are saved
along with the probability (reliability) of the

guessed location.

= True Location
Gray Area = Guess Area

Figure 5: Depiction of guessing an access point’s true

location using three sample locations

Since the location probability was saved
during the collection process, this new information
can be incorporated into the positioning algorithm
The first factor
remains the same while the second factor is now a

by now having two factors.

rating based upon the reliability of the access
points location. Estimating the user’s position is
now simply a weighted average of two factors.
These two algorithms when used in conjunction
will most certainty increase the accuracy of WiFi
Navigation.

Conclusion

During this research project I have had the
opportunity to learn about the Windows CE API,
in particular NDISUIO and wireless networking. I
have also had the opportunity to explore methods
for triangulation and positioning. There is still

work to be done and things to learn. WiFi
Navigation is a cutting-edge research topic with
room for exploration and improvement. The

implementation that has been described in this
paper is very basic and without a doubt further

research can improve WiFi Navigation. 1 hope

that one-day WiFi Navigation will become
common among mobile devices.

I would like to thank Mari Ostendorf for
sponsoring the research and the Electrical
Engineering department at the University of
Washington for purchasing the hardware.

References:

(1]

(2]

(3]

(4]

Gurley, J. William. “Why 802.11 is
underhyped.” http://news.com.com/2010-
7351-5153319.html (4 Feb 4, 2004)

Intel Research Seattle. “Place Lab.”
http://www.placelab.org/

University of Washington. “UW Campus
Navigator”.
http://uwcampusnav.sourceforge.net/
Dataworm. “Pocket Warrior.”
http://pocketwarrior.sourceforge.net

